Transformasi Data Warehouse dengan Cloud dalam Era Big Data

Authors

  • Reza Irsyadul Anam Institut Bisnis dan Teknologi Dewantara

Keywords:

Big Data, Tranasformasi data warehouse, cloud computing

Abstract

Seiring dengan pesatnya perkembangan volume, kecepatan, dan variasi data yang dikenal sebagai Big Data, kebutuhan akan sistem pengelolaan data yang efisien dan skalabel menjadi sangat krusial bagi organisasi (Rajadnye, 2017). (Theofilou et al., 2025) Fenomena ini telah memicu pergeseran paradigma dari arsitektur data warehouse tradisional menuju solusi berbasis cloud yang lebih adaptif dan fleksibel dalam mengakomodasi tuntutan analitik modern (Berisha et al., 2022). Transformasi ini tidak hanya mencakup adopsi infrastruktur awan, tetapi juga integrasi teknologi baru seperti danau data (data lakes) dan danau data terpadu (data lakehouses) yang memungkinkan pengelolaan data semi-terstruktur dan tidak terstruktur secara lebih efektif (Ponnusamy, 2023). Perubahan ini sangat penting untuk mendukung pengambilan keputusan strategis yang didorong oleh data, mengingat data warehouse sendiri dirancang untuk mengintegrasikan dan menyajikan data guna keperluan analisis dan pelaporan (Saputra, 2023).

References

Ahmadi, S. (2023). Elastic Data Warehousing: Adapting To Fluctuating Workloads With Cloud-Native Technologies. Journal of Knowledge Learning and Science Technology ISSN 2959-6386 (Online), 2(3), 282. https://doi.org/10.60087/jklst.vol2.n3.p301

Ahmed, M. S. (2014). DATA WAREHOUSING APPLICATIONS: AN ANALYTICAL TOOL FOR DECISION SUPPORT SYSTEM. International Journal of Computer Science and Informatics, 294. https://doi.org/10.47893/ijcsi.2014.1163

Alasta, A. F., & Enaba, M. A. (2019). Data warehouse on Manpower Employment for Decision Support System. arXiv (Cornell University). https://doi.org/10.48550/arxiv.1904.01134

Alhyasat, E. B., & Al-Dalahmeh, M. (2013). Data Warehouse Success and Strategic Oriented Business Intelligence: A Theoretical Framework. arXiv (Cornell University). https://doi.org/10.48550/arxiv.1307.7328

Alsqour, M., & Owoc, M. L. (2015). The Role of Data Warehouse as a Source of Knowledge Acquisition in Decision-Making. An Empirical Study. In IFIP advances in information and communication technology (p. 21). Springer Science+Business Media. https://doi.org/10.1007/978-3-319-28868-0_2

Amin, R., & Vadlamudi, S. (2021). Opportunities and Challenges of Data Migration in Cloud. Engineering International, 9(1), 41. https://doi.org/10.18034/ei.v9i1.529

Amornbuth, C. (2015). The Relationship of the Quality Data Warehousing to Enhanced Perceived Net Profits and Decision Quality in the Enterprises. Universal Journal of Management, 3(12), 514. https://doi.org/10.13189/ujm.2015.031206

Anil, T. K. (2025). Cloud Migration Strategies: Navigating the Shift to Modern IT Infrastructure. https://philarchive.org/rec/KRICMS-2

Asniar, A., & Sari, S. K. (2015). Pemanfaatan Cloud Computing untuk Enterprise Resources Planning di Indonesia. JURNAL INFOTEL, 7(1), 75. https://doi.org/10.20895/infotel.v7i1.33

Asrani, D., & Jain, R. (2016). Designing a Framework to Standardize Data Warehouse Development Process for Effective Data Warehousing Practices. International Journal of Database Management Systems, 8(4), 15. https://doi.org/10.5121/ijdms.2016.8402

Assunção, M. D. de, Calheiros, R. N., Bianchi, S., Netto, M. A. S., & Buyya, R. (2014). Big Data computing and clouds: Trends and future directions. Journal of Parallel and Distributed Computing, 3. https://doi.org/10.1016/j.jpdc.2014.08.003

Barahama, A. D., & Wardani, R. (2021). Data analysis and data warehouse design based on Pentaho data integration (kettle) to support the determination of student learning achievement. IOP Conference Series Materials Science and Engineering, 1098(5), 52089. https://doi.org/10.1088/1757-899x/1098/5/052089

Berisha, B., Mëziu, E., & Shabani, I. (2022). Big data analytics in Cloud computing: an overview. Journal of Cloud Computing Advances Systems and Applications, 11(1). https://doi.org/10.1186/s13677-022-00301-w

Dinesh, L., & Devi, K. G. (2024). An efficient hybrid optimization of ETL process in data warehouse of cloud architecture. Journal of Cloud Computing Advances Systems and Applications, 13(1). https://doi.org/10.1186/s13677-023-00571-y

Fahmi, F., Hidayanto, A. N., Solikin, S., Indriany, H. S., Prastya, A., & Mardiansyah, S. F. (2022). Data warehouse capability maturity model assessment for efficient monitoring process: a case study in National Narcotics Board. IOP Conference Series Earth and Environmental Science, 969(1), 12055. https://doi.org/10.1088/1755-1315/969/1/012055

González-Castro, V., MacKinnon, L., & Ángeles, M. del P. (2009). An Alternative Data Warehouse Reference Architectural Configuration. In Lecture notes in computer science (p. 33). Springer Science+Business Media. https://doi.org/10.1007/978-3-642-02843-4_6

Huda, C., Jumas, R., Lumenta, M., & Kevin, K. (2010). Analisis Dan Perancangan Data Warehouse Pada PT Pelita Tatamas Jaya. ComTech Computer Mathematics and Engineering Applications, 1(2), 461. https://doi.org/10.21512/comtech.v1i2.2395

Kademeteme, E., Kalema, B. M., & Pretorius, P. (2016). Managing and improving data quality through the adoption of data warehouse in the public sector. African Journal of Science Technology Innovation and Development, 9(1), 31. https://doi.org/10.1080/20421338.2016.1258025

Khan, S., Shakil, K. A., & Alam, M. (2015). Cloud based Big Data Analytics: A Survey of Current Research and Future Directions. arXiv (Cornell University). https://doi.org/10.48550/arxiv.1508.04733

Kurmiawan, T., Setiyawan, A., & Winandi, W. (2020). Perbandingan Kebijakan Sistem Big Data Di Indonesia Dan Uni Eropa. Widya Yuridika, 3(2), 119. https://doi.org/10.31328/wy.v3i2.1514

Kurniawan, A., Rahayu, A., & Wibowo, L. A. (2021). PENGARUH TRANSFORMASI DIGITAL TERHADAP KINERJA BANK PEMBANGUNAN DAERAH DI INDONESIA. Jurnal Ilmu Keuangan Dan Perbankan (JIKA), 10(2), 158. https://doi.org/10.34010/jika.v10i2.4426

Li, G., Qian, X. S., & Ye, C. M. (2011). A New Architecture for Large Data Warehouse. Applied Mechanics and Materials, 87. https://doi.org/10.4028/www.scientific.net/amm.55-57.87

Ma, C., Chou, D. C., & Yen, D. C. (2000). Data warehousing, technology assessment and management. Industrial Management & Data Systems, 100(3), 125. https://doi.org/10.1108/02635570010323193

Mahashabde, S., & Banerjee, S. (2023). Data Warehousing in the Cloud: Unveiling the Advantages and Challenges for Modern Organizations. International Journal of Science and Research (IJSR), 12(10), 1299. https://doi.org/10.21275/sr231014081929

Manekar, A., & Pradeepini, G. (2017). Opportunity and Challenges for Migrating Big Data Analytics in Cloud. IOP Conference Series Materials Science and Engineering, 225, 12148. https://doi.org/10.1088/1757-899x/225/1/012148

Manik, S. P., & Juwono, V. (2024). Strategi Transformasi Digital dalam Tata Kelola Pemerintahan: Studi pada Kementerian Keuangan. Briliant Jurnal Riset Dan Konseptual, 9(1), 1. https://doi.org/10.28926/briliant.v9i1.1623

Mell, P., & Grance, T. (2011). The NIST definition of cloud computing. https://doi.org/10.6028/nist.sp.800-145

Mukherjee, K., Shah, R., Saini, S. K., Singh, K., Khushi, K., Kesarwani, H., Barnwal, K., & Chauhan, A. (2023). Towards Optimizing Storage Costs on the Cloud. 2022 IEEE 38th International Conference on Data Engineering (ICDE), 2919. https://doi.org/10.1109/icde55515.2023.00223

Oueslati, W., & Akaichi, J. (2010). A Survey on Data Warehouse Evolution. International Journal of Database Management Systems, 2(4), 11. https://doi.org/10.5121/ijdms.2010.2402

Ponnusamy, S. (2023). Evolution of Enterprise Data Warehouse: Past Trends and Future Prospects. International Journal of Computer Trends and Technology, 71(9), 1. https://doi.org/10.14445/22312803/ijctt-v71i9p101

Purwanto, E. (2016). Metodologi penelitian kuantitatif. https://perpustakaan.kemendagri.go.id/opac/index.php?p=show_detail&id=3378&keywords=

Rajadnye, A. (2017). Is Datawarehouse Relevant in the Era of Big Data? SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3224451

Saddad, E., El-Bastawissy, A., Hoda, M., & Hazman, M. (2020). Lake Data Warehouse Architecture for Big Data Solutions. International Journal of Advanced Computer Science and Applications, 11(8). https://doi.org/10.14569/ijacsa.2020.0110854

Sami’un, D. C., Rumlaklak, N. D., & Pandie, E. S. Y. (2022). ANALISA TRANSAKSI SISTEM KREDIT MENGGUNAKAN METODE ONLINE ANALYTICAL PROCESSING. TRANSFORMASI, 18(1). https://doi.org/10.56357/jt.v18i1.291

Santos, M. Y., Costa, C., Galvão, J., Andrade, C., Pastor, Ó., & Marcén, A. C. (2019). Enhancing Big Data Warehousing for Efficient, Integrated and Advanced Analytics. In Lecture notes in business information processing (p. 215). Springer Science+Business Media. https://doi.org/10.1007/978-3-030-21297-1_19

Saputra, E. (2023). Permodelan Data Warehouse Untuk Penjualan Ban Menggunakan Online Analytical Processing (OLAP). Jurnal Ilmiah Informatika Dan Ilmu Komputer (JIMA-ILKOM), 2(1), 12. https://doi.org/10.58602/jima-ilkom.v2i1.13

Sheikh, R. A., & Goje, N. S. (2021). Role of Big Data Analytics in Business Transformation (p. 231). https://doi.org/10.1002/9781119711148.ch13

Sheta, O. E., & Eldeen, A. N. (2013). Evaluating a healthcare data warehouse for cancer diseases. arXiv (Cornell University). https://doi.org/10.48550/arxiv.1307.3448

Solodovnikova, D., & Niedrite, L. (2018). An Approach to Handle Big Data Warehouse Evolution. arXiv (Cornell University). https://doi.org/10.48550/arxiv.1809.04284

Thakur, G., & Gosain, A. (2011). DWEVOLVE. ACM SIGSOFT Software Engineering Notes, 36(6), 1. https://doi.org/10.1145/2047414.2047433

Theofilou, A., Nastis, S. A., Tsagris, M., Rodríguez-Pérez, S., & Mattas, K. (2025). Design and Implementation of a Scalable Data Warehouse for Agricultural Big Data. Sustainability, 17(8), 3727. https://doi.org/10.3390/su17083727

Downloads

Published

2025-08-30

Issue

Section

Articles